

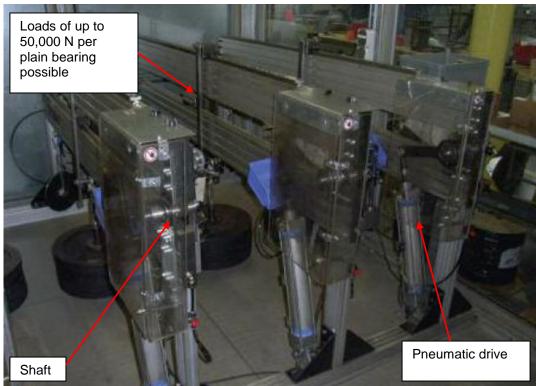


## Page 1 of 7

| Project:                 | Long-time gas nitrified St52 shafts                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------|
| Contact person/customer: | Uwe Sund                                                                                         |
| <u>Task:</u>             | Evaluation of wear tests with various plain bearings against long-time gas nitrified St52 shafts |

Test description and results:

The wear of various plain bearing materials against long-time gas nitrified St52 shafts should be assessed. The test parameters are listed in the following table Test Parameters.


|                  | Parameters                                                                                             |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| Plain bearing    | iglidur G; alloyed brass; rolled metal with gliding layer (for dry operation)                          |  |  |  |  |
| Shaft            | S355J2C (St52-3K) cold drawn; with a subsequent long-time gas nitriding                                |  |  |  |  |
| Motion type      | Pivoting; pivot angle 60°                                                                              |  |  |  |  |
| Load             | 30 MPa →For a socket with Di = 20; L= 20 → 12,000 N                                                    |  |  |  |  |
| Surface Speed    | 0.01 m/s (~ 2s per cycle)                                                                              |  |  |  |  |
| Run time         | up to 200,000 cycles                                                                                   |  |  |  |  |
| Travel distance  | up to 4.2 km                                                                                           |  |  |  |  |
| Test temperature | 23 °C                                                                                                  |  |  |  |  |
| Environment      | Dry; except for the brass bearing<br>An initial lubrication was performed there with Rivolta SKD 3602. |  |  |  |  |

The wear tests were carried out on the heavy duty test stands (diagram 1).





Page 2 of 7



Heavy duty test stand for pivoting 1

To evaluate the wear, the inner diameter of the pressed-in plain bearing is measured in the load direction before and after the test. Together with the past cycles, shaft diameter and pivot angle, the wear rate (number of wear microns on a 1 km distance) can be determined.

The results of the experiments are shown in the following Table 1 and Graph 1.

| Plain bearing Sl                  |                    | Reduction of wall thickness |                  |                |                                |                    |                        |
|-----------------------------------|--------------------|-----------------------------|------------------|----------------|--------------------------------|--------------------|------------------------|
|                                   | Shaft              | D1 before<br>[mm]           | D1 after<br>[mm] | "Wear"<br>[µm] | No. of<br>cycles [-]           | Dist-<br>ance [km] | "Wear rate"<br>[µm/km] |
| iglidur® G                        | St52 gas nitrified | 20.23                       | 20.50            | 270            | 200000                         | 4.2                | 64                     |
| iglidur® G                        | St52 gas nitrified | 20.26                       | 20.47            | 210            | 137642                         | 2.9                | 73                     |
| Brass with initial<br>lubrication | St52 gas nitrified | 20.15                       | 20.70            | 550            | 146565                         | 3.1                | 179                    |
| Brass with initial<br>lubrication | St52 gas nitrified | 20.15                       | 20.60            | 450            | 83403                          | 1.7                | 258                    |
| Brass with initial lubrication    | St52 gas nitrified | 20.10                       | 20.20            | 100            | 50000<br>run time<br>shortened | 1.0                | 96                     |

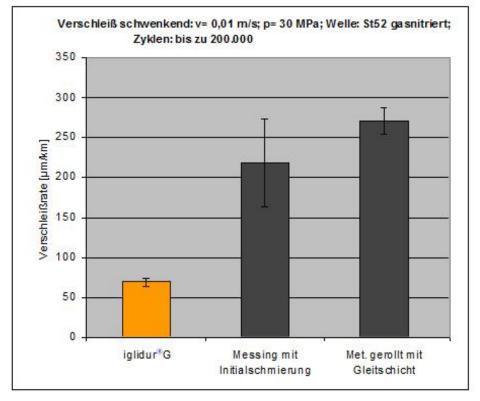
Table 1: Results of wear tests; reduction of wall thickness





## Page 3 of 7

| Rolled metal with gliding layer | St52 gas<br>nitrified | 20.12 | 20.47 | 350 | 59030 | 1.2 | 283 |
|---------------------------------|-----------------------|-------|-------|-----|-------|-----|-----|
| Rolled metal with gliding layer | St52 gas<br>nitrified | 20.12 | 20.46 | 340 | 62667 | 1.3 | 259 |


Note:

D1= Inner diameter

Grease used for initial lubrication = Rivolta SKD 3602

Wear= The wear measured here consists of abrasion and deformation of the plain bearing Wear rate= Indicates the extent of wear ( $\mu$ m) of the plain bearing on a 1 km distance.

#### Graph 1: Results of the wear tests



In the wear tests the iglidur® G material had the lowest wear.

In addition, the tested shafts and plain bearings were visually assessed (diagram 2-6).





#### Page 4 of 7

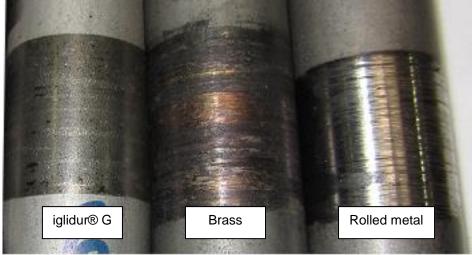



Diagram 2: Shafts in wear tests 1

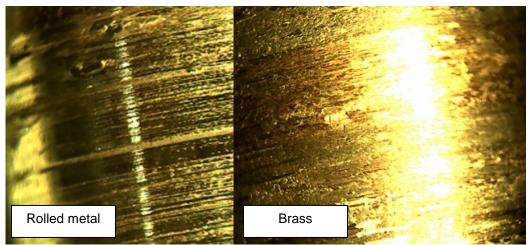



Diagram 3.: Shafts under the microscope 1





#### Page 5 of 7

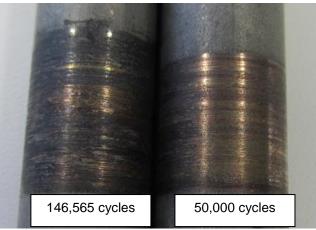



Diagram 4: Shafts in the wear tests with brass plain bearings

## Diagram 5: Brass plain bearings in the wear tests

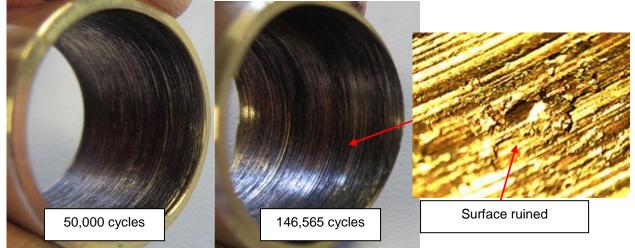



Diagram 5: Rolled metal plain bearings in the wear test

The above specifications show the results of performed tests. All specifications are neither one or more guarantees of specific properties nor one or more guarantees about the suitability of a product for a particular purpose, since the tests took place under laboratory conditions. The guarantee of specific properties of the products and/or its suitability for a particular application must be in written form in the order confirmation. As the results were obtained under laboratory conditions that can almost never simulate the real use, we recommend application-specific measurements under real operating conditions.





### Page 6 of 7

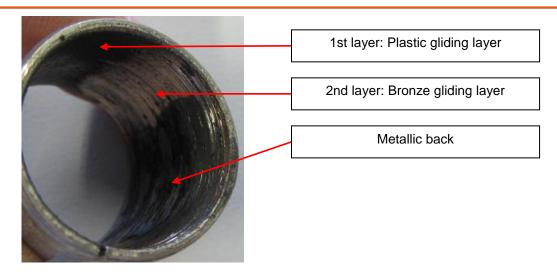



Diagram 6: iglidur® G plain bearing in the wear test







## Page 7 of 7

#### Conclusion / Optimisation proposal:

The findings from these experiments are summarised in Table 4.

#### Table 4: Summary

|                                   | Wear rate<br>[µm/km] | Anomalies<br>on the plain bearing                                      | Anomalies on the shaft                                                   |
|-----------------------------------|----------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|
| iglidur® G                        | 69 ±6                | Normal running tracks,<br>Worn out                                     | Normal running tracks;<br>Cavities filled with plain bearing<br>material |
| Brass with initial<br>lubrication | 219 ±55              | Strong running tracks;<br>disruption;<br>Considerably worn out         | High transfer of brass on to the shaft                                   |
| Rolled metal with gliding layer   | 271 ±17              | Gliding layers worn;<br>Steel back "exposed";<br>Considerably worn out | High shaft wear; seizure between<br>plain bearings and shaft             |

In addition, it should be noted:

- The high wear in competitor's plain bearings is likely to be attributed to an insufficient lubrication. Because:
  - In the case of the rolled metal plain bearing, the gliding layer is already worn after 60,000 cycles.
  - In the case of the brass plain bearing, the initial lubrication does not appear to be sufficient for 200,000 cycles. The wear is considerably lower with a shorter running time (50,000 cycles).
- The (competitor's) plain bearings are sometimes considerably worn out, which means the wear is composed of abrasion and deformation.
  - The cause of the strong flow of the competitor's plain bearings is unknown. Possibly, the high shear stress has a decisive influence here due to the increased coefficient of friction (high coefficient of friction due to the insufficient lubrication).
- The iglidur® G plain bearings "work" differently. Because:
  - For the iglidur G plain bearing, the cavities on the shaft surface are filled. As a result, the solid lubricants could be distributed more easily between the shaft and the plain bearing.